References#

ALavrentev+99

A. D. Aleksandrov, M. A. Lavrentév, and others. Mathematics: Its content, methods and meaning. Courier Corporation, 1999.

AV09

J. S. Almeida and S. Vinga. Biological sequences as pictures–a generic two dimensional solution for iterated maps. BMC Bioinformatics, 10(1):100, 2009.

AragonABBB13

Francisco J Aragón Artacho, David H Bailey, Jonathan M Borwein, and Peter B Borwein. Walking on real numbers. Math. Intelligencer, 35(1):42–60, March 2013.

Bar14

M. F. Barnsley. Fractals everywhere. Academic press, 2014.

BV11

M. F. Barnsley and A. Vince. The chaos game on a general iterated function system. Ergodic Theory and Dynamical Systems, 31(4):1073–1079, 2011.

BPDD97

S. Basu, A. Pan, C. Dutta, and J. Das. Chaos game representation of proteins. Journal of Molecular Graphics and Modelling, 15(5):279–289, 1997.

BG05

I. Borg and P. J. F. Groenen. Modern multidimensional scaling: Theory and applications. Springer Science & Business Media, 2005.

BJorgenson01

P. Borwein and L. Jörgenson. Visible structures in number theory. The American Mathematical Monthly, 108(10):897–910, 2001.

BP97

P. Borwein and C. Pinner. Polynomials with (0,+1,-1) coefficients and a root close to a given point. Canadian Journal of Mathematics, 49(5):887–915, 1997.

CC20

E. Y. S. Chan and R. M. Corless. A random walk through experimental mathematics. In Springer Proceedings in Mathematics & Statistics, pages 203–226. Springer International Publishing, 2020. URL: https://doi.org/10.1007/978-3-030-36568-4_14, doi:10.1007/978-3-030-36568-4_14.

CCGV+20

E. Y. S. Chan, R. M. Corless, L. Gonzalez-Vega, J. R. Sendra, J. Sendra, and S. E. Thornton. Upper Hessenberg and Toeplitz Bohemians. Linear Algebra and its Applications, 601:72–100, 2020.

Cor92

R. M. Corless. Continued fractions and chaos. The American Mathematical Monthly, 99(3):203–215, March 1992. doi:10.1080/00029890.1992.11995835.

DGM+15

M. R. Dennis, P. Glendinning, P. A Martin, F. Santosa, and J. Tanner. The Princeton companion to applied mathematics. Princeton University Press, 2015.

Fel12

D. P. Feldman. Chaos and fractals: an elementary introduction. Oxford University Press, 2012.

FTS94

A. Fiser, G. E. Tusnady, and I. Simon. Chaos game representation of protein structures. Journal of molecular graphics, 12(4):302–304, 1994.

FMV+12

Y. l. Fisher, M. McGuire, R. F. Voss, M. F. Barnsley, R. L. Devaney, and B. B. Mandelbrot. The science of fractal images. Springer Science & Business Media, 2012.

Gol93

N. Goldman. Nucleotide, dinucleotide and trinucleotide frequencies explain patterns observed in chaos game representations of DNA sequences. Nucleic Acids Research, 21(10):2487–2491, 1993.

Ham91

R. W. Hamming. Art of Probability. Addison Wesley Publishing Company, 1991.

Hig02

N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics, January 2002. doi:10.1137/1.9780898718027.

Inc19

OEIS Foundation Inc. The on-line encyclopedia of integer sequences. https://oeis.org/, 2019.

Jef90

H. J. Jeffrey. Chaos game representation of gene structure. Nucleic Acids Research, 18(8):2163–2170, 1990.

Jef92

H. J. Jeffrey. Chaos game visualization of sequences. Computers & Graphics, 16(1):25–33, 1992.

Kac59

M. Kac. Probability and related topics in physical sciences. Volume 1. AMS, 1959.

KKKK15

R. Karamichalis, L. Kari, S. Konstantinidis, and S. Kopecki. An investigation into inter-and intragenomic variations of graphic genomic signatures. BMC Bioinformatics, 16(1):246, 2015.

KHS+13

L. Kari, K. A. Hill, A. S. Sayem, N. Bryans, K. Davis, and N. S. Dattani. Map of life: measuring and visualizing species' relatedness with "molecular distance maps". arXiv preprint arXiv:1307.3755, 2013.

KHS+15

L. Kari, K. A. Hill, A. S. Sayem, R. Karamichalis, N. Bryans, K. Davis, and N. S. Dattani. Mapping the space of genomic signatures. PloS one, 10(5):e0119815, 2015.

KT64

A. Y. Khinchin and T. Teichmann. Continued fractions. Physics Today, 17:70, 1964.

Knu97

D. E. Knuth. Seminumerical Algorithms. Volume 2 of The Art of Computer Programming. Addison Wesley, Reading, MA, 3 edition, 1997.

Kol83

A. N. Kolmogorov. On logical foundations of probability theory. In Probability theory and mathematical statistics, pages 1–5. Springer, 1983.

Lit86

J. E. Littlewood. Littlewood's miscellany. Cambridge University Press, 1986.

Man04

B. B. Mandelbrot. Fractals and Chaos. Springer New York, New York, 2004. URL: https://doi.org/10.1007/978-1-4757-4017-2, doi:10.1007/978-1-4757-4017-2.

MN98

M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation (TOMACS), 8(1):3–30, 1998.

Old63a

C. D. Olds. Continued Fractions. The Mathematical Association of America, January 1963. doi:10.5948/upo9780883859261.

Old63b

C. D. Olds. Continued fractions. Volume 18. Random House New York, 1963.

Old70

C. D. Olds. The simple continued fraction expansion of e. American Mathematical Monthly, pages 968–974, 1970.

SGS91

I. Simon, L. Glasser, and H. A. Scheraga. Calculation of protein conformation as an assembly of stable overlapping segments: application to bovine pancreatic trypsin inhibitor. Proceedings of the National Academy of Sciences, 88(9):3661–3665, 1991.

Ste12

B. P. Stein. Dice rolls are not completely random. 2012. URL: https://www.insidescience.org/news/dice-rolls-are-not-completely-random.

WP17

L. M. Wahl and T. Pattenden. Prophage provide a safe haven for adaptive exploration in temperate viruses. Genetics, 206(1):407–416, 2017.

WBSS04

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE trans. image process., 13(4):600–612, 2004.

Wic03

F. Wickelmaier. An introduction to MDS. Sound Quality Research Unit, Aalborg University, Denmark, 2003.