References
References#
- ALavrentev+99
A. D. Aleksandrov, M. A. Lavrentév, and others. Mathematics: Its content, methods and meaning. Courier Corporation, 1999.
- AV09
J. S. Almeida and S. Vinga. Biological sequences as pictures–a generic two dimensional solution for iterated maps. BMC Bioinformatics, 10(1):100, 2009.
- AragonABBB13
Francisco J Aragón Artacho, David H Bailey, Jonathan M Borwein, and Peter B Borwein. Walking on real numbers. Math. Intelligencer, 35(1):42–60, March 2013.
- Bar14
M. F. Barnsley. Fractals everywhere. Academic press, 2014.
- BV11
M. F. Barnsley and A. Vince. The chaos game on a general iterated function system. Ergodic Theory and Dynamical Systems, 31(4):1073–1079, 2011.
- BPDD97
S. Basu, A. Pan, C. Dutta, and J. Das. Chaos game representation of proteins. Journal of Molecular Graphics and Modelling, 15(5):279–289, 1997.
- BG05
I. Borg and P. J. F. Groenen. Modern multidimensional scaling: Theory and applications. Springer Science & Business Media, 2005.
- BJorgenson01
P. Borwein and L. Jörgenson. Visible structures in number theory. The American Mathematical Monthly, 108(10):897–910, 2001.
- BP97
P. Borwein and C. Pinner. Polynomials with (0,+1,-1) coefficients and a root close to a given point. Canadian Journal of Mathematics, 49(5):887–915, 1997.
- CC20
E. Y. S. Chan and R. M. Corless. A random walk through experimental mathematics. In Springer Proceedings in Mathematics & Statistics, pages 203–226. Springer International Publishing, 2020. URL: https://doi.org/10.1007/978-3-030-36568-4_14, doi:10.1007/978-3-030-36568-4_14.
- CCGV+20
E. Y. S. Chan, R. M. Corless, L. Gonzalez-Vega, J. R. Sendra, J. Sendra, and S. E. Thornton. Upper Hessenberg and Toeplitz Bohemians. Linear Algebra and its Applications, 601:72–100, 2020.
- Cor92
R. M. Corless. Continued fractions and chaos. The American Mathematical Monthly, 99(3):203–215, March 1992. doi:10.1080/00029890.1992.11995835.
- DGM+15
M. R. Dennis, P. Glendinning, P. A Martin, F. Santosa, and J. Tanner. The Princeton companion to applied mathematics. Princeton University Press, 2015.
- Fel12
D. P. Feldman. Chaos and fractals: an elementary introduction. Oxford University Press, 2012.
- FTS94
A. Fiser, G. E. Tusnady, and I. Simon. Chaos game representation of protein structures. Journal of molecular graphics, 12(4):302–304, 1994.
- FMV+12
Y. l. Fisher, M. McGuire, R. F. Voss, M. F. Barnsley, R. L. Devaney, and B. B. Mandelbrot. The science of fractal images. Springer Science & Business Media, 2012.
- Gol93
N. Goldman. Nucleotide, dinucleotide and trinucleotide frequencies explain patterns observed in chaos game representations of DNA sequences. Nucleic Acids Research, 21(10):2487–2491, 1993.
- Ham91
R. W. Hamming. Art of Probability. Addison Wesley Publishing Company, 1991.
- Hig02
N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics, January 2002. doi:10.1137/1.9780898718027.
- Inc19
OEIS Foundation Inc. The on-line encyclopedia of integer sequences. https://oeis.org/, 2019.
- Jef90
H. J. Jeffrey. Chaos game representation of gene structure. Nucleic Acids Research, 18(8):2163–2170, 1990.
- Jef92
H. J. Jeffrey. Chaos game visualization of sequences. Computers & Graphics, 16(1):25–33, 1992.
- Kac59
M. Kac. Probability and related topics in physical sciences. Volume 1. AMS, 1959.
- KKKK15
R. Karamichalis, L. Kari, S. Konstantinidis, and S. Kopecki. An investigation into inter-and intragenomic variations of graphic genomic signatures. BMC Bioinformatics, 16(1):246, 2015.
- KHS+13
L. Kari, K. A. Hill, A. S. Sayem, N. Bryans, K. Davis, and N. S. Dattani. Map of life: measuring and visualizing species' relatedness with "molecular distance maps". arXiv preprint arXiv:1307.3755, 2013.
- KHS+15
L. Kari, K. A. Hill, A. S. Sayem, R. Karamichalis, N. Bryans, K. Davis, and N. S. Dattani. Mapping the space of genomic signatures. PloS one, 10(5):e0119815, 2015.
- KT64
A. Y. Khinchin and T. Teichmann. Continued fractions. Physics Today, 17:70, 1964.
- Knu97
D. E. Knuth. Seminumerical Algorithms. Volume 2 of The Art of Computer Programming. Addison Wesley, Reading, MA, 3 edition, 1997.
- Kol83
A. N. Kolmogorov. On logical foundations of probability theory. In Probability theory and mathematical statistics, pages 1–5. Springer, 1983.
- Lit86
J. E. Littlewood. Littlewood's miscellany. Cambridge University Press, 1986.
- Man04
B. B. Mandelbrot. Fractals and Chaos. Springer New York, New York, 2004. URL: https://doi.org/10.1007/978-1-4757-4017-2, doi:10.1007/978-1-4757-4017-2.
- MN98
M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation (TOMACS), 8(1):3–30, 1998.
- Old63a
C. D. Olds. Continued Fractions. The Mathematical Association of America, January 1963. doi:10.5948/upo9780883859261.
- Old63b
C. D. Olds. Continued fractions. Volume 18. Random House New York, 1963.
- Old70
C. D. Olds. The simple continued fraction expansion of e. American Mathematical Monthly, pages 968–974, 1970.
- SGS91
I. Simon, L. Glasser, and H. A. Scheraga. Calculation of protein conformation as an assembly of stable overlapping segments: application to bovine pancreatic trypsin inhibitor. Proceedings of the National Academy of Sciences, 88(9):3661–3665, 1991.
- Ste12
B. P. Stein. Dice rolls are not completely random. 2012. URL: https://www.insidescience.org/news/dice-rolls-are-not-completely-random.
- WP17
L. M. Wahl and T. Pattenden. Prophage provide a safe haven for adaptive exploration in temperate viruses. Genetics, 206(1):407–416, 2017.
- WBSS04
Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE trans. image process., 13(4):600–612, 2004.
- Wic03
F. Wickelmaier. An introduction to MDS. Sound Quality Research Unit, Aalborg University, Denmark, 2003.